数据库规范设计说明书
1.建表规约
【强制】表达是与否概念的字段,必须使用is_xxx的方式命名,数据类型是tinyint(1)
( 1表示是,0表示否)。
说明:任何字段如果为非负数,必须是无符号。
正例:表达逻辑删除的字段名is_deleted,1 表示删除,0 表示未删除。
【强制】表名、字段名必须使用小写字母或数字,禁止出现数字开头,禁止两个下划线中间只出现数字。数据库字段名的修改代价很大,因为无法进行预发布,所以字段名称需要慎重考虑。
说明:MySQL 在 Windows 下不区分大小写,但在 Linux 下默认是区分大小写。因此,数据库名、表名、字段名,都不允许出现任何大写字母,避免节外生枝。
正例:aliyun_admin,rdc_config,level3_name 反例:AliyunAdmin,rdcConfig,level_3_name
【强制】表名不使用复数名词。
说明:表名应该仅仅表示表里面的实体内容,不应该表示实体数量,对应于模型类名也是单数形式,符合表达习惯。
【强制】禁用保留字,如desc、range、match、delayed等,请参考MySQL官方保留字。 官方文档链接:https://dev.mysql.com/doc/refman/5.7/en/keywords.html
【强制】主键索引名为pk_字段名;唯一索引名为uk_字段名;普通索引名则为idx_字段名。
说明:pk_ 即primary key;uk_ 即 unique key;idx_ 即index的简称。
【强制】小数类型为decimal,禁止使用float和double。
说明:float和double在存储的时候,存在精度损失的问题,很可能在值的比较时,得到不正确的结果。如果存储的数据范围超过decimal的范围,建议将数据拆成整数和小数分开存储。
【强制】如果存储的字符串长度几乎相等,使用char定长字符串类型。
【强制】varchar是可变长字符串,不预先分配存储空间,长度不要超过5000,如果存储长度大于此值,定义字段类型为text,独立出来一张表,用主键来对应,避免影响其它字段索引效率。
【强制】表必备字段:id
【强制】表中每个字段都应当解释该字段的含义
说明:在建表初期或修改字段后都应当说明字段的意思,以便后期维护方便,如下
comment_num int(11) DEFAULT ‘0’ COMMENT ‘评论数’
【推荐】表的命名最好是加上“业务名称_表的作用”。
正例:alipay_task / force_project / trade_config
【推荐】库名与应用名称尽量一致。
【推荐】如果修改字段含义或对字段表示的状态追加时,需要及时更新字段注释。
【推荐】字段允许适当冗余,以提高查询性能,但必须考虑数据一致。冗余字段应遵循:
1) 不是频繁修改的字段。
2) 不是varchar超长字段,更不能是text字段。
正例:商品类目名称使用频率高,字段长度短,名称基本一成不变,可在相关联的表中冗余存储类目名称,避免关联查询。
【推荐】单表行数超过500万行或者单表容量超过2GB,才推荐进行分库分表。
说明:如果预计三年后的数据量根本达不到这个级别,请不要在创建表时就分库分表。
【参考】合适的字符存储长度,不但节约数据库表空间、节约索引存储,更重要的是提升检索速度。
2 索引规约
【强制】业务上具有唯一特性的字段,即使是多个字段的组合,也必须建成唯一索引。
说明:不要以为唯一索引影响了insert速度,这个速度损耗可以忽略,但提高查找速度是明显的;另外,即使在应用层做了非常完善的校验控制,只要没有唯一索引,根据墨菲定律,必然有脏数据产生。
【强制】超过三个表禁止join。需要join的字段,数据类型必须绝对一致;多表关联查询时,保证被关联的字段需要有索引。
说明:即使双表join也要注意表索引、SQL性能。
【强制】在varchar字段上建立索引时,必须指定索引长度,没必要对全字段建立索引,根据实际文本区分度决定索引长度即可。
说明:索引的长度与区分度是一对矛盾体,一般对字符串类型数据,长度为20的索引,区分度会高达90%以上,可以使用count(distinct left(列名, 索引长度))/count(*)的区分度来确定。
【强制】页面搜索严禁左模糊或者全模糊,如果需要请走搜索引擎来解决。
说明:索引文件具有B-Tree的最左前缀匹配特性,如果左边的值未确定,那么无法使用此索引。
【推荐】如果有order by的场景,请注意利用索引的有序性。order by 最后的字段是组合索引的一部分,并且放在索引组合顺序的最后,避免出现file_sort的情况,影响查询性能。
正例:where a=? and b=? order by c; 索引:a_b_c
反例:索引中有范围查找,那么索引有序性无法利用,如:WHERE a>10 ORDER BY b; 索引 a_b无法排序。
【推荐】利用覆盖索引来进行查询操作,避免回表。
说明:如果一本书需要知道第11章是什么标题,会翻开第11章对应的那一页吗?目录浏览一下就好,这个目录就是起到覆盖索引的作用。
正例:能够建立索引的种类:主键索引、唯一索引、普通索引,而覆盖索引是一种查询的一种效果,用explain的结果,extra列会出现:using index。
【推荐】利用延迟关联或者子查询优化超多分页场景。
说明:MySQL并不是跳过offset行,而是取offset+N行,然后返回放弃前offset行,返回 N行,那当offset特别大的时候,效率就非常的低下,要么控制返回的总页数,要么对超过特定阈值的页数进行SQL改写。
正例:先快速定位需要获取的id段,然后再关联:
SELECT a.* FROM 表1 a, (select id from 表1 where 条件 LIMIT 100000,20 ) b where a.id=b.id
【推荐】 SQL性能优化的目标:至少要达到 range 级别,要求是ref级别,如果可以是consts 最好。说明:
1) consts 单表中最多只有一个匹配行(主键或者唯一索引),在优化阶段即可读取到数据。
2) ref 指的是使用普通的索引(normal index)。
3) range 对索引进行范围检索。
反例:explain表的结果,type=index,索引物理文件全扫描,速度非常慢,这个index级别比较range还低,与全表扫描是小巫见大巫。
【推荐】建组合索引的时候,区分度最高的在最左边。
正例:如果where a=? and b=? ,a列的几乎接近于唯一值,那么只需要单建idx_a索引即可。
说明:存在非等号和等号混合判断条件时,在建索引时,请把等号条件的列前置。如:where a>?
and b=? 那么即使a的区分度更高,也必须把b放在索引的最前列。
【推荐】防止因字段类型不同造成的隐式转换,导致索引失效。
【参考】创建索引时避免有如下极端误解:
1) 宁滥勿缺。认为一个查询就需要建一个索引。
2) 宁缺勿滥。认为索引会消耗空间、严重拖慢更新和新增速度。
3) 抵制惟一索引。认为业务的惟一性一律需要在应用层通过“先查后插”方式解决。
参考阿里开发规范